Chemistry:Water (data page)

From HandWiki
Short description: Chemical data page for water

This page provides supplementary data to the article properties of water.

Further comprehensive authoritative data can be found at the NIST Webbook page on thermophysical properties of fluids.

Structure and properties

Structure and properties
Index of refraction, nD 1.333 at 20 °C
Dielectric constant[1]

88.00 at 0 °C
86.04 at 5 °C
84.11 at 10 °C
82.22 at 15 °C
80.36 at 20 °C
78.54 at 25 °C
76.75 at 30 °C
75.00 at 35 °C
73.28 at 40 °C
71.59 at 45 °C
69.94 at 50 °C
66.74 at 60 °C
63.68 at 70 °C
60.76 at 80 °C
57.98 at 90 °C
55.33 at 100 °C

Bond strength 492.215 kJ/mol O–H bond dissociation energy[2]
Bond length 95.87 pm (equilibrium)[3]
Bond angle 104.48° (equilibrium) [4][5]
Magnetic susceptibility −9.04 × 10−6 volume SI units[6]

Thermodynamic properties

Phase behavior
Triple point 273.16 K (0.01 °C), 611.73 Pa
Critical point 647 K (374 °C), 22.1 MPa
Enthalpy change
of fusion at 273.15 K, ΔfusH
6.01 kJ/mol
Entropy change of fusion
at 273.15 K, 1 bar, ΔfusS
22.0 J/(mol·K)
Std enthalpy change
of vaporization, ΔvapHo
44.0 kJ/mol
Enthalpy change of
vaporization at 373.15 K, ΔvapH
40.68 kJ/mol
Std entropy change
of vaporization, ΔvapSo
118.89 J/(mol·K)
Entropy change of
vaporization at 373.15 K, ΔvapS
109.02 J/(mol·K)
Enthalpy change of
sublimation at 273.15 K, ΔsubH
51.1 kJ/mol
Std entropy change of sublimation
at 273.15 K, 1 bar, ΔsubS
~144 J/(mol·K)
Molal freezing point constant −1.858 °C kg/mol
Molal boiling point constant 0.512 °C kg/mol
Solid properties
Std enthalpy change
of formation, ΔfHosolid
−291.83 kJ/mol
Standard molar entropy,
Sosolid
41 J/(mol K)
Heat capacity, cp 12.2 J/(mol K) at −200 °C
15.0 J/(mol K) at −180 °C
17.3 J/(mol K) at −160 °C
19.8 J/(mol K) at −140 °C
24.8 J/(mol K) at −100 °C
29.6 J/(mol K) at −60 °C
32.77 J/(mol K) at −38.3 °C
33.84 J/(mol K) at −30.6 °C
35.20 J/(mol K) at −20.8 °C
36.66 J/(mol K) at −11.0 °C
37.19 J/(mol K) at −4.9 °C
37.84 J/(mol K) at −2.2 °C
Liquid properties
Std enthalpy change
of formation, ΔfHoliquid
−285.83 kJ/mol
Standard molar entropy,
Soliquid
69.95 J/(mol K)
Heat capacity, cp 75.97 J/(mol K) and 4.2176 J/(g·K) at 0 °C
75.42 J/(mol K) and 4.1921 J/(g·K) at 10 °C
75.33 J/(mol K) and 4.1818 J/(g·K) at 20 °C
75.28 J/(mol K) and 4.1814 J/(g·K) at 25 °C
75.26 J/(mol K) and 4.1784 J/(g·K) at 30 °C
75.26 J/(mol K) and 4.1785 J/(g·K) at 40 °C
75.30 J/(mol K) and 4.1806 J/(g·K) at 50 °C
75.37 J/(mol K) and 4.1843 J/(g·K) at 60 °C
75.46 J/(mol K) and 4.1895 J/(g·K) at 70 °C
75.58 J/(mol K) and 4.1963 J/(g·K) at 80 °C
75.74 J/(mol K) and 4.2050 J/(g·K) at 90 °C
75.94 J/(mol K) and 4.2159 J/(g·K) at 100 °C
Gas properties
Std enthalpy change
of formation, ΔfHogas
−241.83 kJ/mol
Standard molar entropy,
Sogas
188.84 J/(mol K)
Heat capacity, cp 36.5 J/(mol K) at 100 °C
36.1 J/(mol K) at 200 °C
36.2 J/(mol K) at 400 °C
37.9 J/(mol K) at 700 °C
41.4 J/(mol K) at 1000 °C
Heat capacity, cv 27.5 J/(mol K) at 100 °C
27.6 J/(mol K) at 200 °C
27.8 J/(mol K) at 400 °C
29.5 J/(mol K) at 700 °C
33.1 J/(mol K) at 1000 °C
Heat capacity ratio,
γ = cp/cv
1.324 at 100 °C
1.310 at 200 °C
1.301 at 400 °C
1.282 at 700 °C
1.252 at 1000 °C
van der Waals' constants a = 553.6 L2 kPa/mol2
b = 0.03049 L/mol

Liquid physical properties

Temperature dependence of the surface tension of pure water
Temperature dependence of the density of ice and water
Velocity of sound in water
c in distilled water at 25 °C 1498 m/s
c at other temperatures[7] 1403 m/s at 0 °C
1427 m/s at 5 °C
1447 m/s at 10 °C
1481 m/s at 20 °C
1507 m/s at 30 °C
1526 m/s at 40 °C
1541 m/s at 50 °C
1552 m/s at 60 °C
1555 m/s at 70 °C
1555 m/s at 80 °C
1550 m/s at 90 °C
1543 m/s at 100 °C
0.983854 g/cm3 at −30 °C 0.99221 g/cm3 at 40 °C
0.993547 g/cm3 at −20 °C 0.99022 g/cm3 at 45 °C
0.998117 g/cm3 at −10 °C 0.98804 g/cm3 at 50 °C
0.9998395 g/cm3 at 0 °C 0.98570 g/cm3 at 55 °C
0.999972 g/cm3 at 3.984 °C[8]
0.9999720 g/cm3 at 4 °C 0.98321 g/cm3 at 60 °C
0.99996 g/cm3 at 5 °C 0.98056 g/cm3 at 65 °C
0.9997026 g/cm3 at 10 °C 0.97778 g/cm3 at 70 °C
0.9991026 g/cm3 at 15 °C 0.97486 g/cm3 at 75 °C
0.9982071 g/cm3 at 20 °C 0.97180 g/cm3 at 80 °C
0.9977735 g/cm3 at 22 °C 0.96862 g/cm3 at 85 °C
0.9970479 g/cm3 at 25 °C 0.96531 g/cm3 at 90 °C
0.9956502 g/cm3 at 30 °C 0.96189 g/cm3 at 95 °C
0.99403 g/cm3 at 35 °C 0.95835 g/cm3 at 100 °C
The values below 0 °C refer to supercooled water.
Viscosity[9]
1.7921 mPa·s (cP) at 0 °C 0.5494 mPa·s at 50 °C
1.5188 mPa·s at 5 °C 0.5064 mPa·s at 55 °C
1.3077 mPa·s at 10 °C 0.4688 mPa·s at 60 °C
1.1404 mPa·s at 15 °C 0.4355 mPa·s at 65 °C
1.0050 mPa·s at 20 °C 0.4061 mPa·s at 70 °C
0.8937 mPa·s at 25 °C 0.3799 mPa·s at 75 °C
0.8007 mPa·s at 30 °C 0.3635 mPa·s at 80 °C
0.7225 mPa·s at 35 °C 0.3355 mPa·s at 85 °C
0.6560 mPa·s at 40 °C 0.3165 mPa·s at 90 °C
0.5988 mPa·s at 45 °C 0.2994 mPa·s at 95 °C
0.2838 mPa·s at 100 °C
Surface tension[10]
75.64 dyn/cm at 0 °C 69.56 dyn/cm at 40 °C
74.92 dyn/cm at 5 °C 68.74 dyn/cm at 45 °C
74.22 dyn/cm at 10 °C 67.91 dyn/cm at 50 °C
73.49 dyn/cm at 15 °C 66.18 dyn/cm at 60 °C
72.75 dyn/cm at 20 °C 64.42 dyn/cm at 70 °C
71.97 dyn/cm at 25 °C 62.61 dyn/cm at 80 °C
71.18 dyn/cm at 30 °C 60.75 dyn/cm at 90 °C
70.38 dyn/cm at 35 °C 58.85 dyn/cm at 100 °C
Electrical conductivity of highly purified water at saturation pressure[11]
Temperature, °C Conductivity, μS/m
0.01 1.15
25 5.50
100 76.5
200 299
300 241

Water/steam equilibrium properties

Vapor pressure formula for steam in equilibrium with liquid water:[12]

[math]\displaystyle{ \log_{10} P = A - \frac{B}{T - C}, }[/math]

where P is equilibrium vapor pressure in kPa, and T is temperature in kelvins.

For T = 273 K to 333 K: A = 7.2326; B = 1750.286; C = 38.1.

For T = 333 K to 423 K: A = 7.0917; B = 1668.21; C = 45.1.

Steam table[13]
Temperature
(°C)
Pressure
(kPa)
H of liquid
(J/g)
ΔvapH
(J/g)
Wvap
(J/g)
ρ of vapor
(kg/m3)
0 0.612 0.00 2496.5 126.0 0.004845
10 1.227 42.0 2473.5 130.5 0.009398
20 2.336 83.8 2450.9 135.1 0.01728
30 4.242 125.6 2427.9 139.7 0.03036
40 7.370 167.2 2404.9 144.2 0.05107
50 12.33 209.0 2381.4 148.7 0.08285
60 19.90 250.8 2357.6 153.0 0.1300
70 31.15 292.7 2332.9 157.3 0.1979
80 46.12 334.6 2307.7 161.5 0.2931
90 70.10 376.6 2282.6 165.5 0.4232
100 101.32 419.0 2256.3 169.4 0.5974
110 143.27 460.8 2229.5 173.1 0.8264
120 198.50 503.2 2201.4 176.7 1.121
130 270.13 545.8 2172.5 180.2 1.497
140 361.4 588.5 2142.8 183.2 1.967
150 476.0 631.5 2111.8 186.1 2.548
160 618.1 674.7 2080.0 188.7 3.263
170 792.0 718.5 2047.0 190.6 4.023
180 1002.7 762.5 2012.2 192.8 5.165
190 1254.9 807.0 1975.8 194.5 6.402
200 1554.3 851.9 1937.3 195.6 7.868
210 1907.9 897.5 1897.5 196.3 9.606
221.1 2369.8 948.5 1850.2 196.6 11.88
229.4 2769.6 987.9 1812.5 196.2 13.87
240.6 3381.1 1040.6 1759.4 195.1 16.96
248.9 3904.1 1080.3 1715.8 193.7 19.66
260.0 4695.9 1134.8 1653.9 190.8 23.84
271.1 5603.4 1195.9 1586.5 186.9 28.83
279.4 6366.5 1240.7 1532.5 183.3 33.18
290.6 7506.2 1302.3 1456.3 177.4 39.95
298.9 8463.9 1350.0 1394.8 172.2 45.93
310.0 9878.0 1415.7 1307.7 164.2 55.25
321.1 11461 1483.9 1212.7 154.5 66.58
329.4 12785 1537.9 1133.2 145.6 76.92
340.6 14727 1617.9 1007.6 130.9 94.25
348.9 16331 1687.0 892.0 117.0 111.5
360.0 18682 1797.0 694.0 91.0 145.3
371.1 21349 1968.3 365.0 47.0 214.5
374.4 22242 2151.2 0 0 306.8
Temperature
(°C)
Pressure
(kPa)
H of liquid
(J/g)
ΔvapH
(J/g)
Wvap
(J/g)
ρ of vapor
(kg/m3)

Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C. The fourth column is the heat of vaporization of each gram of liquid that changes to vapor. The fifth column is the work PΔV done by each gram of liquid that changes to vapor. The sixth column is the density of the vapor.

Melting point of ice at various pressures

Data obtained from CRC Handbook of Chemistry and Physics 44th ed., p. 2390

Pressure kPa Temp. °C
101.325 0.0
32950 −2.5
60311 −5.0
87279 −7.5
113267 −10.0
138274 −12.5
159358 −15.0
179952 −17.5
200251 −20.0
215746 −22.1

Table of various forms of ice

Properties of various forms of ice[14]
Ice
form
Density
g/cm3
Crystal
structure
Triple
points
TP temp °C TP pressure
MPa
Ih 0.92 hexagonal Lq, Vap, Ih 0.01 0.000612
Lq, Ih, III −22.0 207.5
Ih, II, III −34.7 212.9
Ic 0.92 cubic
II 1.17 rhombohedral Ih, II, III −34.7 212.9
II, III, V −24.3 344.3
II, V, VI −55 (est) 620
III 1.14 tetragonal Lq, Ih, III −22.0 207.5
Lq, III, V −17 346.3
Ih, II, III −34.7 212.9
II, III, V −24.3 344.3
IV 1.27 rhombohedral
V 1.23 monoclinic Lq, III, V −17 346.3
Lq, V, VI 0.16 625.9
II, III, V −24.3 344.3
II, V, VI −55 (est) 620
VI 1.31 tetragonal Lq, V, VI 0.16 625.9
Lq, VI, VII 81.6 2200
II, V, VI −55 (est) 620
VI, VII, VIII ≈5 2100
VII 1.50 cubic Lq, VI, VII 81.6 2200
VI, VII, VIII ≈5 2100
VII, VIII, X −173 62000
VIII 1.46 tetragonal VI, VII, VIII ≈5 2100
VII, VIII, X −173 62000
IX 1.16 tetragonal
X 2.46 cubic VII, VIII, X −173 62000
XI 0.92 orthorhombic Vap, Ih, XI −201.5 0 (expected)
XII 1.29 tetragonal
XIII 1.23 monoclinic
XIV 1.29 orthorhombic

Ice XI triple point is theoretical and has never been obtained

Phase diagram

Log-lin pressure–temperature phase diagram of water. The Roman numerals indicate various ice phases.

Water with dissolved NaCl

Water–NaCl phase diagram
Properties of water–NaCl mixtures [15]
NaCl, wt% Teq, °C ρ, g/cm3 n η, mPa·s
0 0 0.99984 1.333 1.002
0.5 −0.3 1.0018 1.3339 1.011
1 −0.59 1.0053 1.3347 1.02
2 −1.19 1.0125 1.3365 1.036
3 −1.79 1.0196 1.3383 1.052
4 −2.41 1.0268 1.34 1.068
5 −3.05 1.034 1.3418 1.085
6 −3.7 1.0413 1.3435 1.104
7 −4.38 1.0486 1.3453 1.124
8 −5.08 1.0559 1.347 1.145
9 −5.81 1.0633 1.3488 1.168
10 −6.56 1.0707 1.3505 1.193
12 −8.18 1.0857 1.3541 1.25
14 −9.94 1.1008 1.3576 1.317
16 −11.89 1.1162 1.3612 1.388
18 −14.04 1.1319 1.3648 1.463
20 −16.46 1.1478 1.3684 1.557
22 −19.18 1.164 1.3721 1.676
23.3 −21.1
23.7 −17.3
24.9 −11.1
26.1 −2.7
26.28 0
26.32 10
26.41 20
26.45 25
26.52 30
26.67 40
26.84 50
27.03 60
27.25 70
27.5 80
27.78 90
28.05 100

Note: ρ is density, n is refractive index at 589 nm,[clarification needed] and η is viscosity, all at 20 °C; Teq is the equilibrium temperature between two phases: ice/liquid solution for Teq < 0–0.1 °C and NaCl/liquid solution for Teq above 0.1 °C.

Self-ionization

Temperature dependence water ionization.svg

°C  −35   0   25   60   300 (~50 MPa)
pKw[16]  17   14.9   14.0   13.0   12 
[math]\displaystyle{ pK_w = -\log ( [\mathrm{H}^+] [\mathrm{OH}^-] ) }[/math]

Spectral data

UV-Vis
λmax ? nm
Extinction coefficient, ε ?
IR
Major absorption bands[17]
vapor: ν1 = 3657.05, ν2 = 1594.75, ν3 = 3755.93 cm−1
liquid: ν1 = 3280, ν2 = 1644, ν3 = 3490 cm−1
hexagonal ice: ν1 = 3085, ν2 = 1650, ν3 = 3220 cm−1
NMR
Proton NMR  4.79 ppm in D2O ; 1.56 ppm in CDCl3 ; 0.40 ppm in C6D6 ; 4.87 in CD3OD[18]
Carbon-13 NMR  N/A
Other NMR data  
MS
Masses of
main fragments
 

Self-diffusion coefficients

Experimental self-diffusion coefficients at various temperatures[19]
Coefficients in 109 m2/s
0 1.099
1 1.138
4 1.261
5 1.303
10 1.525
15 1.765
20 2.023
25 2.299
30 2.594
35 2.907
40 3.238
45 3.588
50 3.956
56 4.423
60 4.748
70 5.615
80 6.557
90 7.574
100 8.667

Additional data translated from German "Wasser (Stoffdaten)" page

The data that follows was copied and translated from the German language Wikipedia version of this page (which has moved to here). It provides supplementary physical, thermodynamic, and vapor pressure data, some of which is redundant with data in the tables above, and some of which is additional.

Physical and thermodynamic tables

In the following tables, values are temperature-dependent and to a lesser degree pressure-dependent, and are arranged by state of aggregation (s = solid, lq = liquid, g = gas), which are clearly a function of temperature and pressure. All of the data were computed from data given in "Formulation of the Thermodynamic Properties of Ordinary Water Substance for Scientific and General Use" (IAPWS , 1984) (obsolete as of 1995).[20] This applies to:

  • T – temperature in degrees Celsius
  • Vspecific volume in cubic decimeters per kilogram (1 dm3 is equivalent to 1 liter)
  • H – specific enthalpy in kilojoules per kilogram
  • U – specific internal energy in kilojoules per kilogram
  • S – specific entropy in kilojoules per kilogram-kelvin
  • cpspecific heat capacity at constant pressure in kilojoules per kilogram-kelvin
  • γ – Thermal expansion coefficient as 10−3 per kelvin
  • λ – Heat conductivity in milliwatts per meter-kelvin
  • ηViscosity in micropascal-seconds (1 cP = 1000 μPa·s)
  • σsurface tension in millinewtons per meter (equivalent to dyn/cm)

Standard conditions

In the following table, material data are given for standard pressure of 0.1 MPa (equivalent to 1 bar). Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm), which is the average atmospheric pressure.

 
Water/steam data table at standard pressure (0.1 MPa)
T °C V
dm3/kg
H
kJ/kg
U
kJ/kg
S
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10−3/K
λ
mW / (m·K)
η
μPa·s
σ   
mN/m
0 lq 1.0002 0.06 −0.04 −0.0001 4.228 −0.080 561.0 1792 75.65
5 1.0000 21.1 21.0 0.076 4.200 0.011 570.6 1518 74.95
10 1.0003 42.1 42.0 0.151 4.188 0.087 580.0 1306 74.22
15 1.0009 63.0 62.9 0.224 4.184 0.152 589.4 1137 73.49
20 1.0018 83.9 83.8 0.296 4.183 0.209 598.4 1001 72.74
25 1.0029 104.8 104.7 0.367 4.183 0.259 607.2 890.4 71.98
30 1.0044 125.8 125.7 0.437 4.183 0.305 615.5 797.7 71.20
35 1.0060 146.7 146.6 0.505 4.183 0.347 623.3 719.6 70.41
40 1.0079 167.6 167.5 0.572 4.182 0.386 630.6 653.3 69.60
45 1.0099 188.5 188.4 0.638 4.182 0.423 637.3 596.3 68.78
50 1.0121 209.4 209.3 0.704 4.181 0.457 643.6 547.1 67.95
60 1.0171 251.2 251.1 0.831 4.183 0.522 654.4 466.6 66.24
70 1.0227 293.1 293.0 0.955 4.187 0.583 663.1 404.1 64.49
80 1.0290 335.0 334.9 1.075 4.194 0.640 670.0 354.5 62.68
90 1.0359 377.0 376.9 1.193 4.204 0.696 675.3 314.6 60.82
99.63 lq 1.0431 417.5 417.4 1.303 4.217 0.748 679.0 283.0 58.99
g 1694.3 2675 2505 7.359 2.043 2.885 25.05 12.26
100 g 1696.1 2675 2506 7.361 2.042 2.881 25.08 12.27 58.92
200 2172.3 2874 2657 7.833 1.975 2.100 33.28 16.18 37.68
300 2638.8 3073 2810 8.215 2.013 1.761 43.42 20.29 14.37
500 3565.5 3488 3131 8.834 2.135 1.297 66.970 28.57
750 4721.0 4043 3571 9.455 2.308 0.978 100.30 38.48
1000 5875.5 4642 4054 9.978 2.478 0.786 136.3 47.66
The values for surface tension for the liquid section of the table are for a liquid/air interface. Values for the gas section of the table are for a liquid/saturated steam interface.

Triple point

In the following table, material data are given with a pressure of 611.7 Pa (equivalent to 0.006117 bar). Up to a temperature of 0.01 °C, the triple point of water, water normally exists as ice, except for supercooled water, for which one data point is tabulated here. At the triple point, ice can exist together with both liquid water and vapor. At higher temperatures, the data are for water vapor only.

 
Water/steam data table at triple point pressure (0.0006117 MPa)
T °C V
dm3/kg
H
kJ/kg
U
kJ/kg
S
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10−3/K
λ
mW / (m·K)
η
μPa·s
0 lq 1.0002 −0.04 −0.04 −0.0002 4.339 −0.081 561.0 1792
0.01 s 1.0908 −333.4 −333.4 −1.221 1.93 0.1 2180
lq 1.0002 0.0 0 0 4.229 −0.080 561.0 1791
g 205986 2500 2374 9.154 1.868 3.672 17.07 9.22
5 g 209913 2509 2381 9.188 1.867 3.605 17.33 9.34
10 213695 2519 2388 9.222 1.867 3.540 17.60 9.46
15 217477 2528 2395 9.254 1.868 3.478 17.88 9.59
20 221258 2537 2402 9.286 1.868 3.417 18.17 9.73
25 225039 2547 2409 9.318 1.869 3.359 18.47 9.87
30 228819 2556 2416 9.349 1.869 3.304 18.78 10.02
35 232598 2565 2423 9.380 1.870 3.249 19.10 10.17
40 236377 2575 2430 9.410 1.871 3.197 19.43 10.32
45 240155 2584 2437 9.439 1.872 3.147 19.77 10.47
50 243933 2593 2444 9.469 1.874 3.098 20.11 10.63
60 251489 2612 2459 9.526 1.876 3.004 20.82 10.96
70 259043 2631 2473 9.581 1.880 2.916 21.56 11.29
80 266597 2650 2487 9.635 1.883 2.833 22.31 11.64
90 274150 2669 2501 9.688 1.887 2.755 23.10 11.99
100 281703 2688 2515 9.739 1.891 2.681 23.90 12.53
200 357216 2879 2661 10.194 1.940 2.114 32.89 16.21
300 432721 3076 2811 10.571 2.000 1.745 43.26 20.30
500 583725 3489 3132 11.188 2.131 1.293 66.90 28.57
750 772477 4043 3571 11.808 2.307 0.977 100.20 38.47
1000 961227 4642 4054 12.331 2.478 0.785 136.30 47.66

Saturated vapor pressure

The following table is based on different, complementary sources and approximation formulas, whose values are of various quality and accuracy. The values in the temperature range of −100 °C to 100 °C were inferred from D. Sunday (1982) and are quite uniform and exact. The values in the temperature range of the boiling point of water up to the critical point (100 °C to 374 °C) are drawn from different sources and are substantially less accurate; hence they should be used only as approximate values.[21][22][23][24]

To use the values correctly, consider the following points:

  • The values apply only to smooth interfaces and in the absence other gases or gas mixtures such as air. Hence they apply only to pure phases and need a correction factor for systems in which air is present.
  • The values were not computed according formulas widely used in the US, but using somewhat more exact formulas (see below), which can also be used to compute further values in the appropriate temperature ranges.
  • The saturated vapor pressure over water in the temperature range of −100 °C to −50 °C is only extrapolated [Translator's note: Supercooled liquid water is not known to exist below −42 °C].
  • The values have various units (Pa, hPa or bar), which must be considered when reading them.

Formulas

The table values for −100 °C to 100 °C were computed by the following formulas, where T is in kelvins and vapor pressures, Pw and Pi, are in pascals.

Over liquid water

loge(Pw) = −6094.4642 T−1 + 21.1249952 − 2.724552×10−2 T + 1.6853396×10−5 T2 + 2.4575506 loge(T)

For temperature range: 173.15 K to 373.15 K or equivalently −100 °C to 100 °C

Over ice

loge(Pi) = −5504.4088 T−1 − 3.5704628 − 1.7337458×10−2 T + 6.5204209×10−6 T2 + 6.1295027 loge(T)

For temperature range: 173.15 K to 273.15 K or equivalently −100 °C to 0 °C

At triple point

An important basic value, which is not registered in the table, is the saturated vapor pressure at the triple point of water. The internationally accepted value according to measurements of Guildner, Johnson and Jones (1976) amounts to:

Pw(ttp = 0.01 °C) = 611.657 Pa ± 0.010 Pa at (1 − α) = 99%
 
Values of saturated vapor pressure of water
Temp.
T in °C
Pi(T) over ice
in Pa
Pw(T) over water
in Pa
Temp.
T in °C
Pw(T) over water
in hPa
Temp.
T in °C
P(T)
in bar
Temp.
T in °C
P(T)
in bar
Temp.
T in °C
P(T)
in bar
−100 0.0013957 0.0036309 0 6.11213 100 1.01 200 15.55 300 85.88
−99 0.0017094 0.0044121 1 6.57069 101 1.05 201 15.88 301 87.09
−98 0.0020889 0.0053487 2 7.05949 102 1.09 202 16.21 302 88.32
−97 0.0025470 0.0064692 3 7.58023 103 1.13 203 16.55 303 89.57
−96 0.0030987 0.0078067 4 8.13467 104 1.17 204 16.89 304 90.82
−95 0.0037617 0.0093996 5 8.72469 105 1.21 205 17.24 305 92.09
−94 0.0045569 0.011293 6 9.35222 106 1.25 206 17.60 306 93.38
−93 0.0055087 0.013538 7 10.0193 107 1.30 207 17.96 307 94.67
−92 0.0066455 0.016195 8 10.7280 108 1.34 208 18.32 308 95.98
−91 0.0080008 0.019333 9 11.4806 109 1.39 209 18.70 309 97.31
−90 0.0096132 0.023031 10 12.2794 110 1.43 210 19.07 310 98.65
−89 0.011528 0.027381 11 13.1267 111 1.48 211 19.46 311 100.00
−88 0.013797 0.032489 12 14.0251 112 1.53 212 19.85 312 101.37
−87 0.016482 0.038474 13 14.9772 113 1.58 213 20.25 313 102.75
−86 0.019653 0.045473 14 15.9856 114 1.64 214 20.65 314 104.15
−85 0.02339 0.053645 15 17.0532 115 1.69 215 21.06 315 105.56
−84 0.027788 0.063166 16 18.1829 116 1.75 216 21.47 316 106.98
−83 0.032954 0.074241 17 19.3778 117 1.81 217 21.89 317 108.43
−82 0.039011 0.087101 18 20.6409 118 1.86 218 22.32 318 109.88
−81 0.046102 0.10201 19 21.9757 119 1.93 219 22.75 319 111.35
−80 0.054388 0.11925 20 23.3854 120 1.99 220 23.19 320 112.84
−79 0.064057 0.13918 21 24.8737 121 2.05 221 23.64 321 114.34
−78 0.075320 0.16215 22 26.4442 122 2.12 222 24.09 322 115.86
−77 0.088419 0.18860 23 28.1006 123 2.18 223 24.55 323 117.39
−76 0.10363 0.21901 24 29.8470 124 2.25 224 25.02 324 118.94
−75 0.12127 0.25391 25 31.6874 125 2.32 225 25.49 325 120.51
−74 0.14168 0.29390 26 33.6260 126 2.40 226 25.98 326 122.09
−73 0.16528 0.33966 27 35.6671 127 2.47 227 26.46 327 123.68
−72 0.19252 0.39193 28 37.8154 128 2.55 228 26.96 328 125.30
−71 0.22391 0.45156 29 40.0754 129 2.62 229 27.46 329 126.93
−70 0.26004 0.51948 30 42.4520 130 2.70 230 27.97 330 128.58
−69 0.30156 0.59672 31 44.9502 131 2.78 231 28.48 331 130.24
−68 0.34921 0.68446 32 47.5752 132 2.87 232 29.01 332 131.92
−67 0.40383 0.78397 33 50.3322 133 2.95 233 29.54 333 133.62
−66 0.46633 0.89668 34 53.2267 134 3.04 234 30.08 334 135.33
−65 0.53778 1.0242 35 56.2645 135 3.13 235 30.62 335 137.07
−64 0.61933 1.1682 36 59.4513 136 3.22 236 31.18 336 138.82
−63 0.71231 1.3306 37 62.7933 137 3.32 237 31.74 337 140.59
−62 0.81817 1.5136 38 66.2956 138 3.42 238 32.31 338 142.37
−61 0.93854 1.7195 39 69.9675 139 3.51 239 32.88 339 144.18
−60 1.0753 1.9509 40 73.8127 140 3.62 240 33.47 340 146.00
−59 1.2303 2.2106 41 77.8319 141 3.72 241 34.06 341 147.84
−58 1.4060 2.5018 42 82.0536 142 3.82 242 34.66 342 149.71
−57 1.6049 2.8277 43 86.4633 143 3.93 243 35.27 343 151.58
−56 1.8296 3.1922 44 91.0757 144 4.04 244 35.88 344 153.48
−55 2.0833 3.5993 45 95.8984 145 4.16 245 36.51 345 155.40
−54 2.3694 4.0535 46 100.939 146 4.27 246 37.14 346 157.34
−53 2.6917 4.5597 47 106.206 147 4.39 247 37.78 347 159.30
−52 3.0542 5.1231 48 111.708 148 4.51 248 38.43 348 161.28
−51 3.4618 5.7496 49 117.452 149 4.64 249 39.09 349 163.27
−50 3.9193 6.4454 50 123.4478 150 4.76 250 39.76 350 165.29
−49 4.4324 7.2174 51 129.7042 151 4.89 251 40.44 351 167.33
−48 5.0073 8.0729 52 136.2304 152 5.02 252 41.12 352 169.39
−47 5.6506 9.0201 53 143.0357 153 5.16 253 41.81 353 171.47
−46 6.3699 10.068 54 150.1298 154 5.29 254 42.52 354 173.58
−45 7.1732 11.225 55 157.5226 155 5.43 255 43.23 355 175.70
−44 8.0695 12.503 56 165.2243 156 5.58 256 43.95 356 177.85
−43 9.0685 13.911 57 173.2451 157 5.72 257 44.68 357 180.02
−42 10.181 15.463 58 181.5959 158 5.87 258 45.42 358 182.21
−41 11.419 17.170 59 190.2874 159 6.03 259 46.16 359 184.43
−40 12.794 19.048 60 199.3309 160 6.18 260 46.92 360 186.66
−39 14.321 21.110 61 208.7378 161 6.34 261 47.69 361 188.93
−38 16.016 23.372 62 218.5198 162 6.50 262 48.46 362 191.21
−37 17.893 25.853 63 228.6888 163 6.67 263 49.25 363 193.52
−36 19.973 28.570 64 239.2572 164 6.84 264 50.05 364 195.86
−35 22.273 31.544 65 250.2373 165 7.01 265 50.85 365 198.22
−34 24.816 34.795 66 261.6421 166 7.18 266 51.67 366 200.61
−33 27.624 38.347 67 273.4845 167 7.36 267 52.49 367 203.02
−32 30.723 42.225 68 285.7781 168 7.55 268 53.33 368 205.47
−31 34.140 46.453 69 298.5363 169 7.73 269 54.17 369 207.93
−30 37.903 51.060 70 311.7731 170 7.92 270 55.03 370 210.43
−29 42.046 56.077 71 325.5029 171 8.11 271 55.89 371 212.96
−28 46.601 61.534 72 339.7401 172 8.31 272 56.77 372 215.53
−27 51.607 67.466 73 354.4995 173 8.51 273 57.66 373 218.13
−26 57.104 73.909 74 369.7963 174 8.72 274 58.56 374 220.64
−25 63.134 80.902 75 385.6459 175 8.92 275 59.46 374.15 221.20
−24 69.745 88.485 76 402.0641 176 9.14 276 60.38
−23 76.987 96.701 77 419.0669 177 9.35 277 61.31
−22 84.914 105.60 78 436.6708 178 9.57 278 62.25
−21 93.584 115.22 79 454.8923 179 9.80 279 63.20
−20 103.06 125.63 80 473.7485 180 10.03 280 64.17
−19 113.41 136.88 81 493.2567 181 10.26 281 65.14
−18 124.70 149.01 82 513.4345 182 10.50 282 66.12
−17 137.02 162.11 83 534.3000 183 10.74 283 67.12
−16 150.44 176.23 84 555.8714 184 10.98 284 68.13
−15 165.06 191.44 85 578.1673 185 11.23 285 69.15
−14 180.97 207.81 86 601.2068 186 11.49 286 70.18
−13 198.27 225.43 87 625.0090 187 11.75 287 71.22
−12 217.07 244.37 88 649.5936 188 12.01 288 72.27
−11 237.49 264.72 89 674.9806 189 12.28 289 73.34
−10 259.66 286.57 90 701.1904 190 12.55 290 74.42
−9 283.69 310.02 91 728.2434 191 12.83 291 75.51
−8 309.75 335.16 92 756.1608 192 13.11 292 76.61
−7 337.97 362.10 93 784.9639 193 13.40 293 77.72
−6 368.52 390.95 94 814.6743 194 13.69 294 78.85
−5 401.58 421.84 95 845.3141 195 13.99 295 79.99
−4 437.31 454.88 96 876.9057 196 14.29 296 81.14
−3 475.92 490.19 97 909.4718 197 14.60 297 82.31
−2 517.62 527.93 98 943.0355 198 14.91 298 83.48
−1 562.62 568.22 99 977.6203 199 15.22 299 84.67
0 611.153 611.213 100 1013.25 200 15.55 300 85.88
Temp.
T in °C
Pi(T) over ice
in Pa
Pw(T) over water
in Pa
Temp.
T in °C
Pw(T) over water
in hPa
Temp.
T in °C
P(T)
in bar
Temp.
T in °C
P(T)
in bar
Temp.
T in °C
P(T)
in bar

Magnetic susceptibility

Accepted standardized value of the magnetic susceptibility of water at 20 °C (room temperature) is −12.97 cm3/mol.[25]

Accepted standardized value of the magnetic susceptibility of water at 20 °C (room temperature) is −0.702 cm3/g.[25]

Magnetic susceptibility of water at different temperatures[25]
Isotopolog,
state
Temperature
in K
Magnetic susceptibiliy
in cm3/mol
H2O(g) >373 −13.1
H2O(l) 373 −13.09
H2O(l) 293 −12.97
H2O(l) 273 −12.93
H2O(s) 273 −12.65
H2O(s) 223 −12.31
DHO(l) 302 −12.97
D2O(l) 293 −12.76
D2O(l) 276.8 −12.66
D2O(s) 276.8 −12.54
D2O(s) 213 −12.41

See also

References

  1. Lide 2004, p. 6-15.
  2. Maksyutenko, Pavlo; Rizzo, Thomas R.; Boyarkin, Oleg V. (2006). "A direct measurement of the dissociation energy of water". The Journal of Chemical Physics 125 (18): 181101. doi:10.1063/1.2387163. PMID 17115729. Bibcode2006JChPh.125r1101M. 
  3. Cook, R; Delucia, F; Helminger, P (1974). "Molecular force field and structure of water: Recent microwave results". Journal of Molecular Spectroscopy 53 (1): 62–76. doi:10.1016/0022-2852(74)90261-6. Bibcode1974JMoSp..53...62C. 
  4. Hoy, AR; Bunker, PR (1979). "A precise solution of the rotation bending Schrödinger equation for a triatomic molecule with application to the water molecule". Journal of Molecular Spectroscopy 74 (1): 1–8. doi:10.1016/0022-2852(79)90019-5. Bibcode1979JMoSp..74....1H. 
  5. "List of experimental bond angles of type aHOH". http://cccbdb.nist.gov/expangle2.asp?descript=aHOH&all=0. 
  6. Griffiths, David Jeffery (1999). Introduction to Electrodynamics (3rd ed.). Prentice Hall. p. 275. ISBN 978-0-13-919960-8. https://archive.org/details/introductiontoel00grif_0. 
  7. "Water and the Speed of Sound". www.engineeringtoolbox.com. http://www.engineeringtoolbox.com/sound-speed-water-d_598.html. 
  8. Franks 2012, p. 376.
  9. Lide 2004, p. 6-201.
  10. Dean & Lange 1999, p. 1663.
  11. Revised Release on Viscosity and Thermal Conductivity of Heavy Water Substance, The International Association for the Properties of Water and Steam Lucerne, Switzerland, August 2007.
  12. Dean & Lange 1999, p. 1436.
  13. Dean & Lange 1999, p. 1476.
  14. Martin Chaplin. "Water Phase Diagram". London South Bank University. https://water.lsbu.ac.uk/water/water_phase_diagram.html. 
  15. Lide, D. R., ed (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. pp. 8–71, 8–116. ISBN 0-8493-0486-5. 
  16. Martin Chaplin. "Water ionization". London South Bank University. https://water.lsbu.ac.uk/water/water_dissociation.html. 
  17. Martin Chaplin. "Water Absorption Spectrum". London South Bank University. https://water.lsbu.ac.uk/water/water_vibrational_spectrum.html. 
  18. Fulmer, Gregory R.; Miller, Alexander J. M.; Sherden, Nathaniel H.; Gottlieb, Hugo E.; Nudelman, Abraham; Stoltz, Brian M.; Bercaw, John E.; Goldberg, Karen I. (2010). "NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist". Organometallics 29 (9): 2176–2179. doi:10.1021/om100106e. ISSN 0276-7333. https://authors.library.caltech.edu/18475/2/om100106e_si_001.pdf. 
  19. Holz, Manfred; Heil, Stefan R.; Sacco, Antonio (2000). "Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements" (in en). Physical Chemistry Chemical Physics 2 (20): 4740–4742. doi:10.1039/b005319h. ISSN 1463-9084. Bibcode2000PCCP....2.4740H. http://xlink.rsc.org/?DOI=b005319h. 
  20. "IAPWS". http://iapws.org/newform.html. "In 1995, IAPWS approved a new formulation of the thermodynamic properties of water and steam for general and scientific use. This replaced the 1984 formulation of Haar, Gallagher and Kell, and now serves as the international standard for water's thermodynamic properties." 
  21. Guildner, L. A.; Johnson, D. P.; Jones, F. E. (1976). "Vapor Pressure of Water at Its Triple Point: Highly Accurate Value". Science 191 (4233): 1261. doi:10.1126/science.191.4233.1261. PMID 17737716. Bibcode1976Sci...191.1261G. 
  22. Klaus Scheffler (1981): Wasserdampftafeln: thermodynam. Eigenschaften von Wasser u. Wasserdampf bis 800°C u. 800 bar (Water Vapor Tables: Thermodynamic Characteristics of Water and Water Vapor to 800°C and 800 bar), Berlin [u.a.] ISBN:3-540-10930-7
  23. D. Sonntag und D. Heinze (1982): Sättigungsdampfdruck- und Sättigungsdampfdichtetafeln für Wasser und Eis. (Saturated Vapor Pressure and Saturated Vapor Density Tables for Water and Ice)(1. Aufl.), VEB Deutscher Verlag für Grundstoffindustrie
  24. Ulrich Grigull, Johannes Staub, Peter Schiebener (1990): Steam Tables in SI-Units – Wasserdampftafeln. Springer-Verlagdima gmbh
  25. 25.0 25.1 25.2 Weast, Robert (1983–1984). CRC, Handbook of Chemistry and Physics 64th edition. Boca Raton, Florida: CRC publishing. pp. E-119. ISBN 0-8493-0464-4. 

Bibliography

External links